سفارش تبلیغ
صبا ویژن






بهار 1387 - ۞ مهندسان شیمی دانشگاه یاسوج ۞

بهترینِ برادرانت، کسی است که با راستگویی اش تو را به راستگویی بخواند و با اعمال نیک خود ، تو را بهبرترینِ اعمال برانگیزد . [امام علی علیه السلام]

۞ موزیک سایت ۞


۞ لینک به ما / لوگوی دوستان ۞

دوستان عزیز برای قرار گرفتن لینک یا لوگوی شما در سایت ما ابتدا لینک یا لوگوی ما را اضافه کنید سپس در قسمت نظرات پیغام بگذارید تا لینک یا لوگوی شما اضافه گردد .
با تشکر

.

بهار 1387 - ۞ مهندسان شیمی دانشگاه یاسوج ۞

لوگوی دوستان

 








۞ آمار سایت ۞

امروز : جمعه 103 اردیبهشت 7
ساعت : 1:56 صبح
بازدید های امروز : 2
بازدید های دیروز : 11
کل بازدید ها : 71526



نیروگاه هسته ای

رآکتور هسته ای
شکافت هسته ای
میله های سوخت

طراحی یک رآکتور

در همه رآکتورها، قلب رآکتور که دمای بسیار زیادی دارد باید خنک شود. در یک نیروگاه هسته ای، سیستم خنک ساز به نوعی طراحی می‌شود که از گرمای آزاد شده به بهترین شکل ممکن استفاده شود. در اغلب این سیستمها از آب استفاده می‌شود. اما آب نوعی کند کننده هم محسوب می‌شود و از این رو نمی تواند در رآکتورهای سریع مورد استفاده قرار گیرد. در رآکتورهای سریع از سدیم مذاب یا نمک های سدیم استفاده می‌شود و دمای عملیاتی خنک ساز بالاتر است. در رآکتورهایی که برای تبدیل مورد طراحی شده اند، به راحتی گرمای آزاد شده را در محیط آزاد می‌کنند.
در یک نیروگاه هسته ای، رآکتور کند منبع آب را گرم می‌کند و آن را به بخار تبدیل می‌کند. بخار آب توربین بخار را به حرکت در می‌آورد ، توربین نیز ژنراتور را می‌چرخاند و به این ترتیب انرژی تولید می‌شود. این آب و بخار آن در تماس مستقیم با راکتور هسته ای است و از این رو در معرض تابش های شدید رادیواکتیو قرار می‌گیرند. برای پیشگیری از هر گونه خطر مرتبط با این آب رادیواکتیو، در برخی رآکتورها بخار تولید شده را به یک مبدل حرارتی ثانویه وارد می‌کنند و از آن به عنوان یک منبع گرمایی در چرخه دومی از آب و بخار استفاده می‌کنند. بدین ترتیب آب و بخار رادیواکتیو هیچ تماسی با توربین نخواهند داشت.



انواع رآکتورهای گرمایی
در در رآکتورهای گرمایی علاوه برکند کننده، سوخت هسته ای ( ایزوتوپ قابل شکافت القایی)، مخزن بخار و لوله های منتقل کننده آن، دیواره های حفاظتی و تجهیزات کنترل و مشاهده سیستم رآکتور نیز وجود دارند. البته بسته به این که این رآکتورها از کانالهای سوخت فشرده شده، مخزن بزرگ بخار یا خنک کننده گازی استفاده کنند، می‌توان آنها را به سردسته تقسیم کرد.
الف - کانالهای تحت فشار در رآکتورهای RBMK و CANDU استفاده می‌شوند و می‌توان آنها را در حال کارکردن رآکتور، سوخت رسانی کرد.
ب - مخزن بخار پرفشار داغ، رایج ترین نوع رآکتور است و در اغلب نیروگاههای هسته ای و رآکتورهای دریایی ( کشتی، ناوهواپیمابر یا زیردریایی ) از آن استفاده می‌شود. این مخزن می‌تواند به عنوان لایه حفاظتی نیز عمل کند.
ج - خنک سازی گازی: در این رآکتورها به جای آب، از یک سیال گازی شکل برای خنک کردن رآکتور استفاده می‌شود. این گاز در یک چرخه گرمایی با منبع حرارتی راکتور قرار می‌گیرد و معمولاً از هلیوم برای آن استفاده می‌شود، هر چند که نیتروژن و دی اکسید کربن نیز کاربرد دارند. در برخی رآکتورهای جدید، رآکتور به قدری گرما تولید می‌کند که گاز خنک کن می‌تواند مستقیما یک توربین گازی را بچرخاند، در حالی که در طراحی های قدیمی تر گاز خنک کن را به یک مبدل حرارتی می‌فرستادند تا در یک چرخه دیگر، آب را به بخار تبدیل کند و بخار داغ، یک توربین بخار را بگرداند.


بقیه اجزای نیروگاه هسته ای
غیر از رآکتور که منبع گرمایی است، تفاوت اندکی بین نیروگاه هسته ای و یک نیروگاه حرارتی تولید برق با سوخت فسیلی وجود دارد.
مخزن بخار تحت فشار معمولا درون یک ساختمان بتونی تعبیه می‌شود که این ساختمان به عنوان یک سد حفاظتی در برابر تابش رادیواکتیو عمل می‌کند. این ساختمان هم درون یک مخزن بزرگتر فولادی قرار می‌گیرد. هسته رآکتور و تجهیزات مرتبط با آن درون این مخزن فولادی قرار گرفته اند و کارکنان می‌توانند راکتور را تخلیه یا سوخت رسانی کنند. وظیفه این مخزن فولادی، جلوگیری از نشت هر گونه گاز یا مایع رادیواکتیو از درون سیال است.
در نهایت این مخزن فولادی هم به وسیله یک ساختمان بتونی خارجی محافظت می‌شود. این ساختمان به قدری محکم است که در برابر اصابت یک هواپیمای جت مسافربری ( مشابه حادثه یازده سپتامبر ) هم تخریب نمی شود. وجود این ساختمان حفاظتی دوم برای جلوگیری از انتشار مواد رادیواکتیو در اثر هرگونه نشت از حفاظ اول ضروری است. در حادثه انفجار چرنوبیل، فقط یک ساختمان حفاظتی وجود داشت و همان موجب شد موادراکتیو در سطح اروپا پخش شود.

رآکتورهای هسته ای طبیعی
در طبیعت هم می‌توان نشانه هایی از رآکتور هسته ای پیدا کرد، البته به شرطی که تمام عوامل مورد نیاز به طور طبیعی در کنار هم قرار گرفته باشند. تنها نمونه شناخته شده یک رآکتور هسته ای طبیعی دو میلیارد سال پیش در منطقه اوکلو در کشور گابون ( قاره آفریقا ) فعالیتش را آغاز کرده است. البته دیگر چنین رآکتورهایی روی زمین شکل نمی گیرند، زیرا واپاشی رادیواکتیو این مواد ( به خصوص U-235 ) در این زمان طولانی 5/4 میلیارد ساله ( سن زمین )، فراوانی U-235 را در منابع طبیعی این رآکتورها بسیار کاهش داده است، به طوری که مقدار آن به پایین تر از حد مورد نیاز آغاز یک واکنش زنجیره ای رسیده است.
این رآکتورهای طبیعی زمانی شکل گرفتند که معادن غنی از اورانیوم به تدریج از آب زیرزمینی یا سطحی پر شدند. این آب به صورت کند کننده عمل کرد و واکنش های زنجیره ای شدیدی به وقوع پیوست. با افزایش دما، آب کند کننده بخار می‌شد و رآکتور خاموش شد. پس از مدتی، این بخارها به مایع تبدیل می‌شدند و دوباره رآکتور به راه می‌افتاد. این سیستم خودکار و بسته، یک رآکتور را کنترل می‌کرد و برای صدها هزار سال، این رآکتور را فعال نگاه می‌داشت.
مطالعه و بررسی این رآکتورهای هسته ای طبیعی بسیار ارزشمند است، زیرا می‌تواند به تحلیل چگونگی حرکت مواد رادیواکتیو در پوسته زمین کمک کند. اگر زمین شناسان بتوانند را از این حرکت‌ها را شناسایی کنند، می‌توانند راه حل های جدیدی برای دفن زباله های هسته ای پیدا کنند تا روزی خدای ناکرده، این ضایعات خطرناک به منابع آب سطح زمین نشت نکنند و فاجعه ای بشری به بار نیاورند.

انواع رآکتورهای گرمایی
الف - کند سازی با آب سبک:
a- رآکتور آب تحت فشار Pressurized Water Reactor(PWR)
b- رآکتور آب جوشان Boiling Water Reactor(BWR)
c- رآکتور D2G

ب- کند سازی با گرافیت:
a- ماگنوس Magnox
b- رآکتور پیشرفته با خنک کنندی گازی Advanced Gas-Coaled Reactor (AGR)
c- RBMK
d- PBMR

ج - کند کنندگی با آب سنگین:
a - SGHWR
b - CANDU

رآکتور آب تحت فشار، PWR
رآکتور PWR یکی از رایج ترین راکتورهای هسته ای است که از آب معمولی هم به عنوان کند ساز نوترونها و هم به عنوان خنک ساز استفاده می‌کند. در یک PWR، مدار خنک اولیه از آب تحت فشار استفاده می‌کند. آب تحت فشار، در دمایی بالاتر از آب معمولی به جوش می‌آید، از این دوچرخه خنک ساز اولیه را به گونه ای طراحی می‌کنند که آب با وجود آنکه دمایی بسیار بالا دارد، جوش نیاید و به بخار تبدیل نشود. این آب داغ و تحت فشار در یک مبدل حرارتی، گرما را به چرخه دوم منتقل میکند که یک نوع چرخه بخار است و از آب معمولی استفاده می‌کند. دراین چرخه آب جوش می‌آید و بخار داغ تشکیل می‌شود، بخار داغ یک توربین بخار را می‌چرخاند، توربین هم یک ژنراتور و در نهایت ژنراتور، انرژی الکتریکی تولید می‌کند.
PWR به دلیل دارابودن چرخه ثانویه با BWR تفاوت دارد. از گرمای تولیدی در PWR به عنوان سیستم گرم کننده درنواحی قطبی نیز استفاده شده است. این نوع رآکتور، رایج ترین نوع رآکتورهای هسته ای است و در حال حاضر، بیش از 230 عدد از آنها در نیروگاههای هسته ای تولید برق و صدها رآکتور دیگر برای تأمین انرژی تجهیزات دریایی مورد استفاده قرار می‌گیرند.

خنک کننده
همان طور که می‌دانید، برخورد نوترونها با سوخت هسته ای درون میله های سوخت، موجب شکافت هسته اتمها می‌شود و این فرآیند هم به نوبه خود، گرما و نوترونهای بیشتری آزاد می‌کند. اگر این حرارت آزاد شده منتقل نشود، ممکن است میله های سوخت ذوب شوند و ساختار کنترلی رآکتور از بین برود ( و البته خطرهای مرگ آوری که به دنبال آن روی می‌دهند. ) در PWR، میله های سوخت به صورت یک دسته در ساختاری، ترسیمی قرار گرفته اند و آب از کف رآکتور به بالا جریان پیدا می‌کند. آب از میان این میله های سوخت عبور می‌کند و به شدت گرم می‌شود، به طوری که به دمای 325 درجه سانتی گراد می‌رسد. درمبدل حرارتی، این آب داغ موجب داغ شدن آب در چرخه دوم می‌شود و بخاری با دمای 270 درجه سانتی گراد تولید می‌کند تا توربین را بچرخاند.

کند کننده
نوترونهای حاصل از یک شکافت هسته ای بیش از آن حدی گرمند که بتوانند یک واکنش شکافت هسته ای را آغاز کنند. انرژی آنها را باید کاهش داد تا با محیط اطراف خود به تعادل گرمایی برسند. محیط اطراف نوترونها ( قلب رآکتور ) دمایی در حدود 450 درجه سانتی گراد دارد.
در یک PWR، نوترونها در پی برخورد با مولکولهای آب خنک ساز، انرژی جنبشی خود را از دست می‌دهند؛ به طوری که پس از 8 تا 10 برخورد ( البته به طور متوسط ) با محیط هم دما می‌شوند. در این حالت، احتمال جذب نوترونها از سوی هسته U-235 بسیار زیاد است ودر صورت جذب، بالافاصله هسته U-236 جدید دچار شکافت می‌شود.
مکانیسم حساسی که هر رآکتور هسته ای را کنترل می‌کند، سرعت آزاد سازی نوترونها در طول یک فرآیند شکافت است به طور متوسط از هر شکافت، دونوترون و مقدار زیادی انرژی آزاد می‌شود. نوترونهای آزاد شده اگر با هسته U-235 دیگری برخورد کنند، شکافت دیگری را سبب می‌شوند و در نهایت یک واکنش زنجیره ای روی می‌دهد. اگر تمام این نوترونها در یک لحظه آزاد شوند، تعدادشان به قدری زیاد می‌شود که باعث ذوب شدن راکتور خواهد شد. ( تعداد ذرات پر انرژی، دمای یک سیستم را تعیین می‌کند. معادله بوتنرمن، این ارتباط را توصیف می‌کند. ) خوشبختانه برخی از این نوترونها پس از یک بازه زمانی نه چندان کوتاه ( حدود یک دقیقه ) تولید می‌شوند و سبب می‌شوند دیگر عوامل کنترل کننده از این تاخیر زمانی استفاده کرده، اثر خود را داشته باشند.
یکی از مزیت های استفاه از آب در PWR، این است که اثر کند سازی آب با افزایش دما کاهش می‌یابد. در حالت عادی، آب در فشار 150 برابر فشار یک اتمسفر قرار دارد ( حدود 15 مگا پاسکال ) و در قلب رآکتور به دمای 325 درجه سانتی گراد می‌رسد. درست است که آب با فشار پانزده مگا پاکسال در این دما جوش نمی آید، ولی به شدت از خاصیت کند کنندگی اش کاسته می‌شود، بنابراین آهنگ واکنش شکافت هسته ای کاهش می‌یابد، حرارت کمتری تولید می‌شود و دما پایین می‌آید. دما که کاهش یابد، توان رآکتور افزایش می‌یابد و دما که افزایش یابد توان راکتور کاهش می‌یابد؛ پس خود سیستم PWR دارای یک سیستم خود تعادلی در رآکتور است و تضمین می‌کند توان رآکتور در کمترین میزان مورد نیاز برای تأمین گرمای سیستم بخار ثانویه است.
در اغلب رآکتورهای PWR، توان رآکتور را در دوره فعالیت معمولی با تغییرات غلظت بورون ( در شکل اسید بوریک ) در چرخه خنک کننده اولیه کنترل اولیه کنترل می‌کنند سرعت جریان خنک کننده اول در رآکتورهای PWR معمولی ثابت است. بورون یک جذب کننده قوی نوترون است و با افزایش یا کاهش غلظت آن، می‌توان شدت فعالیت راکتور را کاهش یا افزایش داد. برای این کار، یک سیستم کنترلی پیچیده شامل پمپ های فشار بالا که آب را در فشار 15 مگا پاسکال از چرخه خارج می‌کند، تجهیزات تغییر غلظت اسید بوریک و تزریق مجدد آب به چرخه خنک ساز مورد نیاز است.
یکی از اشکالات راکتورهای شکافت، این است که حتی پس از توقف واکنش شکافت، هنوز هم واپاشی های رادیواکتیوی انجام می‌شود و حرارت زیادی آزاد می‌شود که می‌تواند راکتور را ذوب کند. البته سیستم های حفاظتی و پشتیبانی متعددی برای جلوگیری از این واقعه وجود دارند، با این حال ممکن است در اثر پیچیدگی های این سیستم، برهمکنش های پیش بینی نشده یا خطاهای عملیاتی مرگ آفرینی در شرایط اضطراری روی دهند. در نهایت، هر رآکتور با یک حفاظ ساختمانی بتونی احاطه شده است که آخرین سد در برابر تشعشعات رادیواکتیو است.

رآکتور آب جوشان، BWR
در رآکتور آب جوشان، از آب سبک استفاده می‌شود. آب سبک، آبی است که در آن فقط هیدروژن معمولی وجود دارد. ) BWR اختلاف زیادی با رآکتور آب تحت فشار ندارد، غیر از اینکه در BWR فقط یک چرخه خنک کننده وجود دارد و آب مستقیما در قلب راکتور به جوش می‌آید. فشار آب در BWR کمتر از PWR است، به طوری که در بیشترین مقدار به 75 برابر فشار جو می‌رسد ( 5/7 مگا پاسکال ) و بدین ترتیب آب در دمای 285 درجه سانتی گراد به جوش می‌آید.
رآکتور BWR به شکلی طراحی شده که بین 12 تا 15 درصد آب درون قلب رآکتور به شکل بخار در قسمت بالای آن قرار می‌گیرد. بدین ترتیب عملکرد بخش بالایی و پایینی هسته رآکتور با هم تفاوت دارند. در بخش بالایی قلب رآکتور، کند سازی کمتری صورت می‌گیرد و در نتیجه بخش بالایی کمتر است.
در حالت کلی دو مکانیسم برای کنترل BWR وجود دارد: استفاده از میله های کنترل و تغییر جریان آب درون راکتور.
الف - بالا بردن یا پایین آوردن میله های کنترل، روش معمولی کنترل توان رآکتور در حالت راه اندازی رآکتور تا رسیدن به 70 درصد حداکثر توان است. میله های کنترل حاوی مواد جذب کننده نوترون هستند؛ در نتیجه پایین آوردن آنها موجب افزایش جذب نوترون در میله ها، کاهش جذب نوترون در سوخت و درنهایت کاهش آهنگ شکافت هسته ای و پایین آمدن توان رآکتور می‌شود. بالا بردن میله های سوخت دقیقاً نتیجه معکوس می‌دهد.
ب - تغییرات جریان آب درون رآکتور، زمانی برای کنترل رآکتور مورد استفاده قرار می‌گیرد که راکتور بین 70 تا صد درصد توان خود کار می‌کند. اگر جریان آب درون رآکتور افزایش یابد، حباب های بخار در حال جوش سریع تر از قلب راکتور خارج می‌شوند و آب درون قلب رآکتور بیشتر می‌شود. افزایش مقدار آب به معنی افزایش کندسازی نوترون و جذب بیشتر نوترونها از سوی سوخت است و این یعنی افزایش توان راکتور. با کاهش جریان آب درون رآکتور، حباب‌ها بیشتر در رآکتور باقی می‌مانند، سطح آب کاهش می‌یابد و به دنبال آن کندسازی نوترونها و جذب نوترون هم کاهش می‌یابد و در نهایت توان رآکتور کاهش می‌یابد.
بخار تولید شده در قلب رآکتور از شیرهای جدا کننده بخار و صفحات خشک کن ( برای جذب هر گونه قطرات آب داغ ) عبور می‌کند و مستقیماً به سمت توربین های بخار که بخشی از مدار رآکتور محسوب می‌شوند، می‌رود. آب اطراف رآکتور همواره در معرض تابش و آلودگی رادیواکتیو است و از آنجا که توربین هم در تماس مستقیم با این آب است، باید پوشش حفاظتی داشته باشد. اغلب آلودگی های درون آب عمر کوتاهی دارند ( مانند N16 که بخش اعظم آلودگی های آب را تشکیل می‌دهد و نیمه عمرش تنها 7 ثانیه است )، بنابراین مدت کوتاهی پس از خاموش شدن رآکتور می‌توان به قسمت توربین وارد شد.
در رآکتور BWR، افزایش نسبت بخار آب به آب مایع درون رآکتور موجب کاهش گرمای خروجی می‌شود. با این حال، یک افزایش ناگهانی در فشار بخار، سبب بروز یک کاهش ناگهانی در نسبت بخار به آب مایع درون رآکتور می‌شود که خود، سبب افزایش توان خروجی می‌شود. این شرایط و دیگر حالت های خطرساز، موجب شده است از سیستم کنترلی اسید بوریک ( بورون ) نیز استفاده شود، بدین شکل که در سیستم پشتیبان خاموش کننده اضطراری، محلول اسید بوریک با غلظت بالا به چرخه خنک کننده تزریق می‌شود. خوبی این سیستم این است که اسید اوریک، یک خورنده قوی است و معمولا در PWR سبب می‌شود تلفات ناشی از خوردگی قابل توجه باشد. در بدترین شرایط اضطراری که تمام سیستم های امنیتی از کار افتاد، هر رآکتور به وسیله یک ساختمان حفاظتی از محیط اطراف جدا شده است. در یک رآکتور BWR جدی، حدود 800 دسته واحد سوخت قرار می‌گیرد و در هر دسته بین 74 تا 100 میله سوخت قرار می‌گیرد. این چنین حدود 140 تن اورانیوم در قلب رآکتور ذخیره می‌شود.

• رآکتور D2G
رآکتور هسته ای D2G را می‌توان در تمام ناوهای دریایی ایالات متحده می‌توان پیدا کرد. D2G مخفف عبارت زیراست:
رآکتور ناو جنگی D=Destroyer-sized reactor
نس دوم 2=Second Geneation
ساخت جنرال الکتریک G= General - Electric built
بدین ترتیب، D2G را می‌توان مخفف این عبارت دانست: رآکتور هسته ای نسل دوم ویژه ناوهای جنگی ساخت جنرال الکتریک. این رآکتور برای تولید حداکثر 150 مگا وات انرژی الکتریکی و عمر مفید 15 سال مصرف معمولی طراحی شده است.
در این رآکتور، برای مخزن بخار دو رآکتور وجود دارد و طوری طراحی شده که بتوان هر دو اتاق توربین را با یک رآکتور به راه انداخت. اگر هر دو رآکتور فعال باشند، ناو به سرعت 32 گره می‌رسد. اگر یک رآکتور فعال باشد و توربین‌ها متصل به هم باشند، سرعت ناو به 25 تا 27 گره خواهد رسید و اگر فقط یک رآکتور فعال باشد ولی توربین‌ها جدا باشند، سرعت فقط 15 گره خواهد بود.

 

منبع: http://edu.tebyan.net/physics/nuclear-energy/09.htm




نوشته شده توسط دانشجویان مهندسی شیمی(85) دانشگاه یاسوج در جمعه 87 خرداد 10 و ساعت 2:53 عصر

۞۞ نظرات شما ( نظر) ۞۞

حضور زن در صنعت


اگر به ساختار درونی نهادهای صنعتی کشورمان نگاهی بیندازیم،در می ‌یابیم که حضور زنان در این عرصه علی رغم داشتن تخصص و سواد کافی تا کنون بسیار کم رنگ و نامحسوس بوده است.
شاید در گذشته به دلیل اینکه این نوع کارها به عنوان "کارهای مردانه" تلقی می شد زنان را از فکر اینکه در رشته های صنعت و معدن کسب علم و تخصص کنند باز می داشت اما با رشد جوامع و شکل گرفتن اجتماعات مختلف حمایت از حقوق زن و پی بردن به توانمندی این گروه از آفریدگان خداوند ،آنان خود نیز کم کم به این باور رسیدند که می توانند در همه عرصه ها حضوری فعال داشته باشند.
اگر چه طی چند سال اخیر سطوح مدیریتی ما نگاه دیگری به زنان داشته و مسؤولیت های مهمتری را به آنها سپرده، اما مقایسه این آمار با جمعیت این گروه از افراد جامعه بسیار ناچیز است.
با توجه به اینکه صنعت نفت به عنوان صنعت مادر در کشور ما محسوب می گردد، در نگاهی کلی به میزان حضور زنان در این صنعت و نوع تقسیم بندی مشاغل آنها در می یابیم که حضور زنان در این صنعت به فراخور انتظار و استعدادهای ذاتی آنها به سطح لازم نرسیده است و باید به منظور استفاده از توانمندی های آنان تلاش بیشتری هم از سوی مسؤولان و هم از سوی زنان شاغل در صنایع نفت و گاز و پتروشیمی صورت پذیرد.
آنچه باعث شد ذهن نگارنده به این مطلب معطوف گردد صحبت های مهندس لیلا زرگر طالبی ناظر اجرایی تهویه شرکت بهره برداری نفت و گاز کارون بود که گفت: امروزه ما شاهد هستیم که در بسیاری از سازمانها و نهادها از تخصص زنان در جای خود استفاده نمی­شود و درصد بیشتری از زنان در سمت های دفتری مشغول به فعالیت هستند.
وی که خود فارغ التحصیل رشته مهندسی مکانیک گرایش حرارت و سیالات از دانشگاه شهید چمران اهواز است در سال 1382 و در طرح جذب دانش‌آموختگان ممتاز دانشگاهها به استخدام شرکت ملی مناطق نفتخیز جنوب در آمد.
"تا قبل از استخدام در شرکت نفت در بخش خصوصی و در یک شرکت طراح و سازنده تجهیزات نفت،گاز و پتروشیمی که پروژه های بزرگ نفتی انجام می داد، با سمت مدیر پروژه مشغول فعالیت بودم و در زمینه طراحی ، ساخت و نصب تجهیزات نفت و گاز تجارب ارزشمندی را کسب کردم. ذهنیت من قبل از ورود به شرکت نفت این بود که می توانم از این تجارب به نحو مطلوبی استفاده نمایم، اما در ابتدا کاری دفتری در واحد خدمات به من سپرده شد و پس از اینکه توانستم تا حدودی توانمندی های خود را نشان دهم و اعتماد مسؤولان را جلب نمایم به عنوان ناظر اجرایی تهویه در اداره خدمات مهندسی و بهسازی شرکت بهره‌برداری نفت و گاز کارون مشغول به خدمت شدم."
نگاهی به کارنامه شغلی وی تا قبل از استخدام در شرکت نفت به عنوان مدیر پروژه های ساخت مشعل‌های پتروشیمی مارون، طراح سیستم تهویه مطبوع یک ساختمان دو طبقه مشرف به کارگاه صنعتی در شرکت ملی حفاری با استفاده از نرم‌افزار کریر(CARRIER)، مهندس پروژه پری‌هیترهای شرکت نفت مرکزی و مدرس دروس مهندسی مکانیک در دانشگاه علمی کاربردی سازمان آب و برق، نشان می دهد که می توان از توانایی های زنانی با این تجارب و توانمندی ها به نحو مطلوب و کارآمدتری استفاده کرد.
طراحی برنامه رایانه‌ای جهت تخمین بار سرمایی و گرمایی ساختمانها، طراحی بانک اطلاعاتی جهت اموال تهویه شرکت کارون که مجهز به سیستم جستجو براساس کلید اطلاعات ورودی به وسیله نرم‌افزار MICROSOFT ACCESS است، تهیه محاسبات و اطلاعات مورد نیاز طراحی سیستم‌های تهویه مطبوع ساختمانها جهت افزایش ظرفیت و کاهش بار دستگاههای موجود، نظارت بر انجام مراحل مختلف تعمیرات دستگاههای تهویه و خنک‌کننده، طراحی بانک اطلاعاتی پروژه‌ها ،طراحی برنامه رایانه‌ای جهت تعمیرات دوره‌ای ساختمانها و تأسیسات واحدهای عملیاتی و ستادی شرکت کارون از جمله کارهایی است که وی در مدت خدمت خود با کمک دیگر همکارانش به منظور مکانیزه نمودن فعالیت های اداره خدمات مهندسی و بهسازی اماکن این شرکت به انجام رسانده است.
کارنامه درخشان این همکار نشان می دهد که زنان نیز می توانند تاثیرات چشمگیری در بهبود وضعیت کار به انجام برسانند ولی در زمینه عدم بکارگیری آنان نیز نمی توان همه اشکالات را به گردن دیگران انداخت. زیرا بسیاری از زنان هنوز خود به توانایی هایشان پی نبرده اند و یا اینکه اعتماد بنفس لازم را برای حضور در رقابت های اجتماعی به دست نیاورده اند و تا زمانی که آنها به خودباوری نرسند هیچ نهاد و سازمانی نمی تواند به آنان کمک کند.
مهندس زرگر طالبی می گوید: ترس از عدم انجام درست وظایف چیزی است که بسیاری از زنان را از حضور در اجتماع باز می دارد، زیرا حضور زن در اجتماع نباید باعث کمرنگ شدن حضور او در محیط خانوادگی گردد و همین امر باعث گردیده که آن قشر از زنان که در سازمان های مختلف کار می کنند مسؤولیت های سبک تری را به عهده گیرند تا بتوانند تعادل را در زندگی خود برقرار کنند.
او می افزاید: زنان برای پیشرفت و حفظ تعادل در زندگی خانوادگی و کاری باید در جبهه های متعددی بجنگند تا بتوان از آنان به عنوان مادر و همسری مهربان و کارمندی وظیفه شناس با مسؤولیت های سنگین یاد کرد و استفاده مثبت از وقت و در واقع مدیریت زمان چیزی است که می تواند در حفظ این تعادل به آنان کمک کند.
وی درباره نحوه استفاده از این فاکتور در انجام وظایفش می گوید:وظایف من به عنوان ناظر اجرایی تهویه سبک و سنگین شامل تهیه برنامه های زمانبندی شده جهت تعمیرات،سرویس و تغییرات مورد نیاز در دستگاههای سبک و سنگین تهویه،نظارت بر کارهای مختلف تعمیرات و نگهداری دستگاههای خنک کننده ،تهیه محاسبات اطلاعات مورد نیاز جهت طراحی در رابطه با تغییرات کلی و جزیی، پیش بینی برآورد لازم و اقلام و ابزار مورد نیاز است.
این وظایف باید در محدوده شرکت کارون و در وسعتی به طول 1100 کیلومتر شامل مجموعه های صنعتی 7 گانه،تاسیسات و میدانهای نفتی،کارخانجات گاز و گاز مایع و پالایشگاه شیرین سازی گاز ، تصفیه خانه های آب صنعتی ، دستگاههای تهویه سبک و سنگین، چیلرهای تراکمی،سردخانه ها ،پکیج ها وآبسردکن های موجود در اماکن اداری و تاسیسات شرکت کارون انجام گیرد که بدون شک اگر نتوانم بین وقت و زمان حضور در محل کار و وظایف محوله هماهنگی برقرار نمایم نمی توانم  کارهایم را در طول ساعات اداری به پایان برسانم و به ناچار مجبور می­شوم از زمان حضور در منزل کاسته و زمان بیشتری را در محل کار باشم  که در این صورت قادر نخواهم بود به عنوان مادر و همسری وظیفه شناس ایفای نقش نمایم و در واقع نوعی عدم تعادل در زندگی ام ایجاد می گردد. لذا نقش مدیریت زمان در این میان به خوبی احساس می گردد.
از دیدگاه مهندس لیلا زرگر طالبی علاوه بر مدیریت زمان، نظم و انضباط در کارها ، مطالعه و خودباوری از دیگر عوامل مهم در پیشرفت نه تنها زنان بلکه همه انسانها است و با استفاده از این عناصر هر انسانی می تواند سکاندار زندگی خود در مسیر پیشرفت باشد.




نوشته شده توسط دانشجویان مهندسی شیمی(85) دانشگاه یاسوج در جمعه 87 خرداد 10 و ساعت 2:50 عصر

۞۞ نظرات شما ( نظر) ۞۞

انجمن مهندسی شیمی ایران

 

آیین نامه کمیته دانشجویی انجمن مهندسی شیمی ایران

فصل اول کلیات و اهداف

ماده 1 :کمیته دانشجویی انجمن مهندسی شیمی ایران به منظور گسترش و پیشبرد و ارتقای علم و توسعه کمی و کیفی نیروهای متخصص و بهبود بخشیدن به امور آموزشی و پژوهشی در زمینه های مربوط به مهندسی شیمی و رشته های وابسته و زیر نظر انجمن مهندسی شیمی ایران، که از این پس در این آیین نامه کمیته نامیده می شود، تشکیل می شود.

ماده 2 :کمیته موسسه ای غیرانتفاعی و غیرسیاسی است و در زمینه های علمی و پژوهشی و فنی زیر نظر انجمن مهندسی شیمی ایران فعالیت می کند و رئیس هیات مدیره آن نماینده مجمع عمومی کمیته می باشد.

ماده 3 :مرکز کمیته در شهر تهران و در محل دبیرخانه انجمن مهندسی شیمی ایران می باشد.

ماده 4: کمیته از تاریخ تصویب این آیین نامه برای مدت نامحدود تشکیل می شود و ملزم به رعایت قوانین جمهوری اسلامی ایران می باشد.

فصل دوم وظایف و فعالیتها

ماده 5: به منظور نیل به هدفهای مذکور در ماده(1) این آیین نامه، کمیته اقدامات زیر را به عمل خواهد آورد:

1-5: انجام تحقیقات علمی و فرهنگی در سطح ملی و بین المللی با محققان و متخصصانی که به گونه ای با علم مهندسی شیمی سر و کار دارند.

2-5: همکاری با نهادهای اجرایی،علمی و پژوهشی در زمینه ارزیابی و بازنگری طرح ها و اجرای طرحها و برنامه های مربوط به امور آموزش و پژوهش در زمینه موضوع فعالیت کمیته زیر نظر انجمن مهندسی شیمی ایران.

3-5: ترغیب و تشویق پژوهشگران و تجلیل از محققان ، دانشجویان و اساتید ممتاز.

4-5: ارائه خدمات آموزشی و پژوهشی.

5-5: برگزاری گردهمایی های علمی ، آموزشی و فرهنگی در سطح ملی، منطقه ای و بین المللی.

6-5: انتشار کتب و نشریات و نرم افزارهای علمی.

7-5: کاریابی و راهنمایی برای مهندسین و دانشجویان مهندسی شیمی.

8-5: حفظ حقوق صنفی و شئون اجتماعی مهندسین شیمی ایران.

9-5: ایجاد بانک اطلاعاتی در زمینه های فعالیت های مهندسی شیمی.

10-5: ایجاد ارتباط با انجمنهای علمی و فنی داخل و خارج از کشور.

11-5: برگزاری مسابقات علمی در سطح ملی، منطقه ای و بین المللی در سطح دانشجویی.
ادامه مطلب...


نوشته شده توسط دانشجویان مهندسی شیمی(85) دانشگاه یاسوج در شنبه 87 فروردین 10 و ساعت 6:51 عصر

۞۞ نظرات شما ( نظر) ۞۞


مطالب پیشین

سلام 2باره
امید
تمرکز
پیام تسلیت
نستیم اما میشویم
نیم نگاهی به جریان کاری مهندسی شیمی در دانشگاه یاسوج
[عناوین آرشیوشده]


    حقوق این وب سایت محفوظ است و کپی از آن تنها با ذکر نام مجاز می باشد
All Rights Reserved 2007-2008 © chemengyu.coo.ir

 Resolution: 1024 * 768

 RSS   Atom 

۞ منوی اصلی ۞

= صفحه نخست
= پست الکترونیک
= شناسنامه مدیر


۞ نویسندگان ۞

بهار 1387 - ۞ مهندسان شیمی دانشگاه یاسوج ۞
دانشجویان مهندسی شیمی(85) دانشگاه یاسوج
دانشگاه یاسوج،مهندسی شیمی ،در جستجوی بهترینها،لایق زیباترینها


۞ موضوعات سایت ۞



۞ فهرست موضوعی یادداشت ها ۞

تاریخچه مهندسی شیمی[11] . عمومی[7] . مهندس شیمی و مهندسی شیمی[6] . مهندسی شیمی[6] . یاسوج[3] . عکس های آموزشی و جالب[2] . عکس هایی از دانشگاه[2] . تجهیزات مهندسی شیمی[2] . تمرکز . حکمت خدا . دانشگاه یاسوج . دانلود کتاب و پروژه . سلام . عاشورا . فانوس . ما . مدیر سایت . منابع . آزمون ارشد . امید . ایران . پیام تسلیت . نیم نگاهی به جریان کاری مهندسی شیمی در دانشگاه یاسوج .


۞ موضوعات آرشیو شده ۞
تابستان 1387
بهار 1387
زمستان 1386
پاییز 1386


۞ پیوندهای دوستان ۞

ساعد


۞ لینک های روزانه(لینک باکس) ۞

نفت نیوز [71]
مدرسه ی اینترنتی تبیان [59]
مسابقات کمیکار [93]
ارژی هسته ای [93]
سایت دانشگاه یاسوج [164]
سیستم اطلاع رسانی نفت و انرژی [111]
[آرشیو(6)]


۞ خبرنامه ۞

شما می توانید با وارد کردن ایمیل خود در این قسمت از به روز شدن این سایت با خبر شوید.
 


۞ تابلو آزاد ۞

تبادل نظر بازدید کننده ها با هم